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Regular control problems in the sense of the Legendre condition are defined, and second order necessary and
sufficient optimality conditions in this class are reviewed. Adding a scalar homotopy parameter, differential
pathfollowing is introduced. The previous sufficient conditions ensure the definiteness and regularity of the
path. The role of AD for the implementation of this approach is discussed, and two examples excerpted from
quantum and space mechanics are detailed.
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Introduction

In [17], automatic differentiation allowed to assemble the two-point boundary value prob-
lem embodying the first order necessary optimality condition of an optimal control prob-
lem. Adifor [6] was used, and sensitivities were computed using AD again, in connection
with primitive second order optimality conditions. This approach was given a full treat-
ment with the development of the cotcot code [9]. Given the data defining the control
problem, a set of Matlab routines was generated through AD so as to solve the problem
by single shooting and to systematically check conjugate point second order conditions
[10]. The present paper aims at presenting the next step, that is the addition of a layer au-
tomating differential pathfollowing for optimal control problems depending on one scalar
homotopic parameter: The differential equation that embodies the continuation procedure
is automatically generated and numerical integration performed. The resulting code [15]
relies crucially on AD to compile the definition of the parametric control problem into a
collection of Matlab Mex-files. In particular, the core of the method is to replace shoot-
ing by the mere integration of an AD-defined ODE. Differential pathfollowing replaces
Newton solving—except for the computation of the starting point where shooting is still
needed—, and provides numerical checks all along the path of optimal control second
order sufficient conditions.

The paper is organized in five sections. The first one settles the mathematical frame-
work for second order necessary and sufficient conditions. The infinite-dimensional set-
ting together with the dynamical features typical of optimal control of ODEs have some
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peculiarities, and we give a more or less self-contained overview of the necessary part
along the lines of [1]. Section two introduces differential homotopy for the regular class
of optimal control problems just defined. The role of AD and other algorithmic issues are
reviewed in section three. Finally, two examples coming from ongoing research projects
are treated. One in dissipative quantum control, the other in space mechanics. In the first
case, homotopy explores the change of solutions in a range of physical parameters, while
in the latter pathfollowing is used to regularize and simplify the L1-minimization problem
considered.

1. Second order conditions for regular optimal control problems

Let us consider the following optimal control problem: Minimize the integral or Lagrange
cost functional ∫ t f

0
f 0(x(t), u(t)) dt → min

subject to differential constraints

ẋ(t) = f (x(t), u(t)), u(t) ∈ U, t ∈ [0, t f ],

and boundary conditions

x(0) = x0, x(t f ) = x f .

The state, x, lives on an n-dimensional manifold1 X so, in local coordinates, x(t) ∈ Rn.
The control, u, belongs to an m-dimensional manifold U. Being without boundary, U has
charts with open domains in Rm and u(t) ∈ Rm, locally. The latter is a strong restriction as
typical control problems involve control constraints, that is manifolds U with boundary.2

Such an example is addressed in §For the sake of simplicity, the positive final time t f is
assumed to be fixed. The data ( f 0, f ) is smooth3 in (x, u). We seek a measurable essentially
bounded control so, in coordinates, u ∈ L∞m ([0, t f ]) = L∞([0, t f ],Rm). In order to assess
first and second order necessary optimality conditions, let u be an optimal control, and let
x be the associated Lipschitz optimal trajectory defined on the whole interval [0, t f ]. We
define the augmented system, which amounts to incorporating the cost into the state. Set
x̂ = (x0, x) ∈ Rn+1. Almost for all t,

˙̂x(t) = f̂ (x̂(t), u(t)) with f̂ (x̂, u) = ( f 0, f )(x, u).

Define x̂(0) = (0, x0), so the cost is retrieved as one of the components of the augmented
state. From now on, we drop the ˆ on variables to simplify notations, keeping in mind that
in our context x(t) ∈ Rn stands for (x0(t), x(t)) ∈ Rn+1, and f for ( f 0, f ). What follows is
a very partial account of [1, chap. 20-21], without the differential-geometric machinery.
Among many others, see also [11, 25, 28] and references therein.

For any s ∈ [0, t f ], the endpoint mapping

Fs : u 7→ x(s, u) ∈ Rn

1Unless otherwise specified manifolds are supposed to be C∞-smooth.
2This does not exclude applications with bounded controls, though, as U may be a compact submanifold. See also [17]
(U = S1) and [16] (U = S2).
3That is C∞-smooth.
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that maps a control to the solution of

ẋ(t) = f (x(t), u(t)), x(0) = x0,

is well defined and smooth in a neighbourhood in L∞m ([0, s]) of u by virtue of the implicit
function theorem, and

F′s(u) δu = δx(s), δu ∈ L∞m ([0, s]),

where δx is the solution of

δẋ(t) = ∂x f (x(t), u(t)) δx(t) + ∂u f (x(t), u(t)) δu(t), δx(0) = 0. (1)

The first order necessary condition is obtained asserting that Ft f cannot be locally open1

at u. We recall the following standard (nonlinear) open mapping result.

Theorem 1.1 Let F : E → Rn be a smooth2 mapping on the Banach space E. Let u be a
non-critical point (F′(u) is onto), then F is locally open at u.

As result, F′t f
(u) cannot be onto, and there is a nonzero covector λ ∈ (Rn)∗ such that

λF′t f
(u) = 0. This is Lagrange rule which gives Pontryagin maximum principle in weak

form. Let p be the Lipschitz solution (valued in (Rn)∗) of the adjoint equation

ṗ(t) = −p(t) ∂x f (x(t), u(t)), p(t f ) = λ.

The triple (x, u, p) is called an extremal. For any δu ∈ L∞m ([0, t f ]),

0 = λF′t f
(u) δu = p(t f ) δx(t f ).

Integrating by parts, ∫ t f

0
∂uH(x(t), u(t), p(t)) δu(t) dt = 0

where H(x, u, p) = p f (x, u) is the Hamiltonian function. Accordingly,
∂uH(x(t), u(t), p(t)) = 0 almost everywhere on [0, t f ]. Further optimality conditions
are obtained using the following second order open mapping theorem.

Theorem 1.2 Let F : E → Rn be a smooth mapping on the Banach space E. Let u be
a corank one critical point of F (codim Im F′(u) = 1), and let 0 , λ ∈ (Rn)∗ belong to
[Im F′(u)]⊥. If λF′′(u) is sign-indefinite on Ker F′(u), then F is locally open at u.

The bilinear form λF′′(u) ∈ L (E,L (E,R)) ' L2(E, E; R) is called the intrinsic sec-
ond order derivative of F and is defined up to a scalar in the corank one case. In our
situation, λF′′t f

(u) has to be sign-semidefinite on Ker F′t f
(u) for local optimality to hold.

Given s ∈ [0, t f ], define the symmetric (Schwarz) bilinear form Bs = λF′′(u). By the
implicit function theorem, for δu and δv in L∞m ([0, s])],

F′′s (u) (δu, δv) = δ2x(s)

1A mapping between topological spaces is locally open at a point if it sends neighbourhood of the point onto neighbour-
hoods of its image.
2That is C∞-smooth.
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with

δ2 ẋ(t) = ∂x f [t] δ2x(t) + ∂2
xx f [t] (δx(t), δy(t)) + ∂2

xu f [t] (δx(t), δv(t))

+ ∂2
ux f [t] (δu(t), δy(t)) + ∂2

uu f [t] (δu(t), δv(t)), δ2x(0) = 0,

and δx (resp. δy) associated with δu (resp. δv) according to (1). The argument [t] in partial
derivatives of f stands for (x(t), u(t)) for notational convenience. Integrating by parts as
before,

Bs (δu, δv) =

∫ s

0
[ ∂2

xxH[t] (δx(t), δy(t)) + ∂2
xuH[t] (δx(t), δv(t))

+ ∂2
uxH[t] (δu(t), δy(t)) + ∂2

uuH[t] (δu(t), δv(t)) ] dt

the argument [t] standing now for (x(t), u(t), p(t)). Since u is essentially bounded, Bs re-
mains continuous on L∞m ([0, s]) endowed with the weaker L2-norm,1 and can be continu-
ously extended to L2

m([0, s]) by density. We set

Ks = Ker F′s(u)
‖.‖2
,

and remark that the sign-definiteness of Bs on Ker F′s(u) is equivalent to the sign-
semidefiniteness on Ks of the extension of Bs to L2

m. Using the embedding of the original
space into a Hilbert one to check sign-definiteness is referred to as two-norm discrepancy
[25]. On this Hilbert space, Bs ∈ L (L2

m,L (L2
m,R)) ' L (L2

m) is identified with a self-
adjoint operator. Similarly, the restriction Bs |Ks

of the bilinear form to Ks is identified with
j∗Ks

Bs jKs ∈ L (Ks) where jKs is the canonical injection Ks ↪→ L2
m([0, s]) (and j∗Ks

its ad-
joint). The following assumption, known as the (strong) Legendre condition, will ensure
the negative definiteness of Bs on all L2

m([0, s]) for small enough s:

∇2
uuH(x(t), u(t), p(t)) ≤ −αIm, t ∈ [0, t f ],

for some α > 0. Extremals verifying the Legendre condition are called regular.

Proposition 1.3 Under the Legendre condition, Bs is identified with the Fredholm oper-
ator (−I + Rs) on L2

m([0, s]), Rs a compact operator, and is negative definite for small
s.

Proof . The Legendre condition implies that

−

∫ s

0
∂2

uuH[t] (δu(t), δv(t)) dt

is an equivalent scalar product on L2
m([0, s]). In this identification, Bs = −I + Rs where Rs

is associated with the bilinear part∫ s

0
[ ∂2

xxH[t] (δx(t), δy(t)) + ∂2
xuH[t] (δx(t), δv(t)) + ∂2

uxH[t] (δu(t), δy(t)) ] dt. (2)

Now, δx = T δu where T = j ◦ T0 is the composition of the canonical injection j :
H1

m([0, s]) ↪→ L2
m([0, s]) which is a compact operator [14], and of T0 ∈ L (L2

m,H
1
m) which

maps δu to δx. Then T is compact on L2
m, and so is Rs as there is at least one left or right

1The application remains continuous though the topology is weakened because L2([0, s]) is a topological module over
L∞([0, s]).



Differential continuation for regular optimal control problems 5

composition with T in each term of (2). Moreover, T can be represented as the integral
Hilbert-Schmidt operator

(T δu)(t) =

∫ t

0
Φ(t − σ) ∂u f [σ] δu(σ) dσ

where Φ is the fundamental solution of δẋ(t) = ∂x f [t] δx(t). Then, denoting |.| the equiva-
lent norm on L2

m, one has the estimate

Bs (δu, δu) = −|δu|2 + O(s)| δu|2, s→ 0,

and the negative definiteness for small s follows. �

Clearly, if s ≤ t, Bt |Kt < 0 implies Bs |Ks
< 0, hence the following definition. The first

conjugate time along the extremal, t1c, is

t1c = sup{s > 0 | Bs |Ks
< 0}.

Proposition 1.4 (see [1]) Let t1c ∈ (0, t f ] for a regular extremal. Then Bt1c |Kt1c
∈ L (Kt1c)

has a nontrivial kernel.

Conjugate times are more generally defined as times tc such that Btc |Ktc
is degenerate.

Points x(tc) are then referred to as conjugate points. Under the Legendre condition, the
equation ∂uH(x, u, p) = 0 can be solved in the neighbourhood of the extremal, yielding
the smooth implicit function u(x, p). Plugging u(x, p) into H defines the true Hamilto-
nian, H(x, p) = H(x, u(x, p), p) (still denoted H, the number of arguments avoiding any
ambiguity). Remarkably,

ẋ(t) = ∂pH(x(t), u(t), p(t)) = ∂pH(x(t), p(t)),

ṗ(t) = −∂xH(x(t), u(t), p(t)) = −∂xH(x(t), p(t)),

which we write more compactly ż(t) =
−→
H(z(t)), with z = (x, p) and

−→
H = (∇pH,−∇xH) the

symplectic gradient. A solution of the equation linearized along z, the Jacobi equation,

δż(t) =
−→
H′(z(t)) δz(t),

is called a Jacobi field. Such a field δz = (δx, δp) is said to be vertical at time t whenever
δx(t) = 0. These notions allow to characterize and compute conjugate times.

Proposition 1.5 An instant s ∈ (0, t f ] along a regular extremal is a conjugate time if and
only if there exists a Jacobi field δz = (δx, δp) vertical at 0 and s such that δx . 0 on
[0, tc].

Proof . Let δu ∈ Ker Bs |Ks
, δu , 0. Then Bs δu must belong to K⊥s . But Ks which is the

closure in L2
m of Ker F′s(u) is also equal to Ker Gs, Gs ∈ L (L2

m,Rn) being the extension
of F′s(u) to L2

m (such an extension exists and remains continuous because u is bounded).
Indeed,

Lemma 1.6 Let F be an everywhere dense subspace of a normed space, E, and let G
be finite-dimensional. Let u ∈ L (F,G), and let v ∈ L (E,G) be its continuous linear
extension. Then Ker v = Ker u.

Proof (of lemma). One has F = Ker u⊕H where H ' Im u and the direct sum is algebraic.
As G is finite-dimensional, the image of u is closed so, by definition of v, Im u = Im v.
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Hence, E = Ker v ⊕ H algebraically. Both Ker v and H are closed, the latter being finite-
dimensional, so the direct sum is also topological in E. Readily, Ker u ⊂ Ker v, so Ker u×
H ⊂ Ker v × H. Since E = F, Ker v × H = Ker u × H = Ker u × H = Ker u × H, whence
the conclusion. �

Thus, K⊥s = (Ker Gs)⊥ = Im G∗s, and there exists ξ ∈ Rn such that, for any δv in
L2

m([0, s]),

Bs (δu, δv) = (G∗sξ|δv)L2
m

= (ξ|Gs δv)Rn = δp(s) δy(s)

with δp the covector valued solution of

δ ṗ(t) = −δp(t) ∂x f [t] − p(t) ∂2
xx f [t] δx(t) − p(t) ∂2

ux f [t] δu(t), δpi(s) = −ξi, i = 1, n,

and δx (resp. δy) associated to δu (resp. δv) according to (1). Integrating by parts and
compensating terms from both sides, one gets∫ s

0
[ ∂2

uuH[t] (δu(t), δv(t)) + ∂2
xuH[t] (δx(t), δv(t)) + ∂2

puH[t] (δp(t), δv(t)) ] dt = 0

for arbitrary δv so that on [0, s]

δu(t) = −(∇2
uuH[t])−1(∇2

xuH[t] δx(t) + ∇2
puH[t] δpT (t)).

Plugging this expression of δu into the differential equations of δx and δp, one verifies
that δz = (δx, δp) is a Jacobi fied. As δu belongs to Ks = Ker Gs, δx(s) = Gs δu = 0 and
the field is vertical at 0 and s. Besides, if δx ≡ 0,

0 = Bs (δu, δu) =

∫ s

0
∂2

uuH[t] (δu(t), δu(t)) dt ≤ −α‖δu‖2L2
m

by Legendre condition, so δu would be zero, which is not. Conversely, let δz = (δx, δp)
be a Jacobi field vertical at 0 and s, δx . 0. Setting

δu(t) = −(∇2
uuH[t])−1(∇2

xuH[t] δx(t) + ∇2
puH[t] δpT (t)),

one has

δẋ = ∂x(∇pH)(x(t), p(t)) δx(t) + ∂p(∇pH)(x(t), p(t)) δp(t)

= ∂x f [t] δx(t) + ∂u f [t] δu(t), δx(0) = 0. (3)

In particular, δu ∈ Ks as δx(s) = 0. For δv ∈ Ks, using the definition of δu,

Bs (δu, δv) =

∫ s

0
[ ∂2

xxH[t] (δx(t), δv(t)) + ∂2
uxH[t] (δu(t), δy(t)) − ∂2

puH[t] (δp(t), δv(t)) ] dt.

As

δ ṗ = ∂x(−∇xH)(x(t), p(t)) δx(t) + ∂p(−∇xH)(x(t), p(t)) δp(t)

= −δp(t) ∂x f [t] − ∂2
xx f [t] δx(t) − ∂2

uu f [t] δu(t),
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an integration by parts give

Bs (δu, δv) = −δp(t) δy(t)]s
0 = 0

since δv ∈ Ks (so δy(0) = δy(s) = 0). Therefore, δu belongs to Ker Bs |Ks
. As δu = 0 would

imply δx ≡ 0 by virtue of (3), we conclude that Bs |Ks
has indeed a non-trivial kernel. �

We finally formulate the second order necessary condition for regular extremals in the
corank one analytic case.1

Theorem 1.7 [1, 28] For a regular extremal associated with an analytic corank one opti-
mal control, the absence of conjugate times on (0, t f ) is necessary for L∞-local optimality.

Proof . Suppose there exists a conjugate time tc ∈ (0, t f ). By definition, the kernel of Btc |Ktc

is not trivial so one can find 0 , δu ∈ Ktc such that Btc (δu, δu) = 0. Let us define δ̃u ∈ Kt f

as the extension of δu by 0 on [tc, t f ], and check that it cannot belong to Ker Bt f |Kt f
. If

this were the case, one could construct as in the proof of Proposition 1.5 a Jacobi field
δ̃z = (δx̃, δp̃) vertical at 0 and t f , such that δx̃ . 0 (δu , 0, so δ̃u , 0). But as

δ ˙̃x(t) = ∂x f [t] δx̃(t) + ∂u f [t] δ̃u(t), δx̃(t f ) = 0,

δx̃ would identically vanish on [tc, t f ] (nonempty since tc < t f ). Under the assumption that
u is analytic, the Jacobi equation has analytic data and so analytic solutions. In particular,
δx̃ would identically vanish over [0, t f ], whence the contradiction. As δ̃u < Ker Bt f |Kt f

,

one can find δ̃v ∈ Kt f such that Bt f (δ̃u, δ̃v) , 0. Clearly, Bt f (δ̃u, δ̃u) = Btc (δu, δu) = 0,
so Bt f takes opposite signs on the subspace generated by δ̃u and δ̃v. It is then indefinite
on Kt f , and so must be its restriction to Ker F′tc(u). By virtue of Theorem 1.2, since u is a
corank one critical point, Ft f is locally open at u which prevents the point from being a
local minimizer in L∞m ([0, t f ]). �

It is clear from the proof that in the analytic situation, if the first conjugate point t1c
belongs to (0, t f ), the following happens. Under the Legendre assumption, all operators
Bs |Ks

are Fredholm and so diagonalizable on a Hilbert basis of eigenvectors. For s < t1c,
all the eigenvalues are strictly negative. For t1c, finitely many of them vanish (the kernel of
a Fredholm operator is finite-dimensional [14]). For s > t1c at least one becomes positive,
ensuring sign-indefiniteness. On the contrary, without analyticity, the kernel may remain
nontrivial for s > t1c whith no positive eigenvalue appearing. The second order intrin-
sic derivative may so remain negative semi-definite on a nonempty interval of conjugate
times.

In contrast with finite-dimensional optimization, one cannot obtain a sufficient condi-
tion for optimality by a compactness argument. However, there is a very satisfactory result
asserting local optimality in a strong sense. Coming back to the initial control problem
stated at the beginning of the section, we still assume that we have a regular extremal. Re-
membering that x̂ = (x0, x), Pontryagin maximum principle in strong form states that, if u
is the bounded solution and x the associated Lipschitz trajectory, there exists a nonpositive
constant p0 and a Lipschitz function p : [0, t f ] → (Rn)∗ such that almost everywhere on
[0, t f ],

ẋ(t) = ∂pH(x(t), u(t), p(t)), ṗ(t) = −∂xH(x(t), u(t), p(t)),

1In which case the manifolds X, U, and the data ( f 0, f ) have to be assumed smooth-analytic as well.
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and

H(x(t), u(t), p(t)) = max
u∈U

H(x(t), u, p(t)),

where (p0 appears as a parameter)

H(x, u, p) = p0 f 0(x, u) + p f (x, u).

If the maximized Hamiltonian, (x, p) 7→ maxu∈U H(x, u, p), is well defined and smooth in
a neighbourhood of z, one necessarily has

H(x, p) = H(x, u(x, p), p) = max
u∈U

H(x, u, p)

on this neighbourhood under the Legendre condition (the implicit function u(x, p) being
locally the unique zero of ∂uH(x, ·, p), hence the only maximizer of H(x, ·, p)). These
relations are homogenous in (p0, p) and there are two cases: The abnormal case, p0 = 0,
and the normal one, p0 < 0. A control is said to be C 0-locally optimal whenever there
exists a neighbourhood of the associated trajectory in C 0([0, t f ],Rn) such that any other
admissible trajectory1 in this neighbourhood has a greater cost.

Theorem 1.8 For a normal regular extremal in the neighbourhood of which the maximized
Hamiltonian is smooth, the absence of conjugate time on (0, t f ] is sufficient for C 0-local
optimality.

The proof is of completely different nature compared to the necessary condition. The
argument is not spectral but relies on the geometric construction of a so-called field of ex-
tremals (see [1, 11]). Summarizing, under appropriate assumptions, before first conjugate
time local optimality holds on a large C 0-neighbourhood of the trajectory, while past t1c
local optimality is lost, even in small L∞-neighbourhoods.

2. Differential pathfollowing

Assume we are given a family of optimal control problems parameterized by λ ∈ [0, 1] in
the form of §1. For each λ, we minimize∫ t f (λ)

0
f 0(x(t), u(t), λ) dt → min

with fixed final time t f (λ) > 0, subject to differential constraints on the fixed manifold X,

ẋ(t) = f (x(t), u(t), λ), u(t) ∈ Uλ, t ∈ [0, t f (λ)],

and boundary conditions

x(0) = x0(λ), x(t f ) = x f (λ).

As before, we assume that manifolds Uλ are without boundary, and that all the data is
smooth with respect to (x, u, λ) (resp. λ). We make the following uniform assumption:

1A trajectory with the fixed endpoints generated by a bounded control valued in U.
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For all λ ∈ [0, 1], there exists a normal regular extremal (xλ, uλ, pλ) in the neighbour-
hood of which the maximized Hamiltonian is smooth, and along which Jacobi fields
never become vertical for t ∈ (0, t f (λ)].

See [13] for a refined analysis in the Riemannian setting. Let λ0 ∈ [0, 1]. Under our
assumption, the application

(p0, λ) 7→ x(t f (λ), x0(λ), p0, λ)

mapping (p0, λ) to the value at t f (λ) of the x-coordinate of the solution z = (x, p) to

ż(t) =
−→
H(z(t), λ), t ∈ [0, t f (λ)], z(0) = (x0(λ), p0),

is a smooth implicit function in a neighbourhood of (pλ0(0), λ0). Herebefore, H(x, p, λ) =

H(x, u(x, p, λ), p, λ) = maxu∈U H(x, u, p, λ) where u(x, p, λ) is implicitly defined thanks to
the Legendre condition. Optimal control shooting is a coordinate-dependent computation
and we must choose a fixed chart on X whose domain contains the target points x f (λ) in
order to define the homotopy function [20]. In such coordinates,

h(p0, λ) = x(t f (λ), x0(λ), p0, λ) − x f (λ)

is smooth on the previous neighbourhood, possibly shrinked so x f (λ) stays in the chart.
Finding the solution pλ0(0) of the n-dimensional shooting equation h(., λ0) = 0 provides us
with an extremal along which no Jacobi field becomes vertical on (0, t f (λ0)]. In particular,
there is no conjugate time on (0, t f (λ0)] and we have a C 0-locally optimal solution of
optimal control problem with parameter λ0. As target points x f (λ) must remain in the
chart not only for λ close to λ0 but for all λ ∈ [0, 1], we propose the following global
framework.

Let (x, λ) 7→ ϕ(x, λ) ∈ Rn be a parameterized chart defined on an open domain of the
manifold (with boundary) X × [0, 1]. The graph {(x f (λ), λ), λ ∈ [0, 1]} of x f has to be a
subset of this domain. Consider similarly the cotangent space T ∗x0(λ) above each point of
the graph of x0 to define the fiber space

F =
⋃
λ∈[0,1]

{x0(λ)} × T ∗x0(λ) × {λ}

which is an (n + 1)-submanifold (with boundary) of T ∗X × [0, 1]. When the cotangent
bundle is trivial, T ∗X ' X ×Rn, one simply has F = Rn × [0, 1]. The homotopy can then
be globally defined on some open subset F0 of F to Rn putting

h(z, λ) = ϕ(x(t f (λ), x0(λ), p0, λ), λ) − ϕ(x f (λ), λ), (z, λ) = (x0(λ), p0, λ) ∈ F .

By restricting F0 if necessary, one can assume that it only contains regular points of
h. As 0 is a regular value of the homotopy, each connected component of h = 0 is a 1-
dimensional submanifold of F0, diffeomorphic either to S1 or to a real interval. A difficult
issue is to provide sufficient conditions à la Smale [2] that ensure existence of a component
joining λ = 0 to λ = 1. Other issues include the following, as illustrated in the trivial
case F0 = Ω × [0, 1] with Ω an open subset of Rn. (i) Components diffeomorphic to
real intervals must have their endpoints in the topological boundary of Ω × [0, 1]. Such
endpoints are critical points of the homotopy (the path could be otherwise prolongated),
and bifurcations may occur [2]. (ii) Besides, for a fixed λ, one has to compare the costs
associated to the zeros in each component of h(., λ) = 0. This global aspect is responsible
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for possible loss of regularity—even discontinuity—of the value function (mapping λ to
the minimum value of the cost when it exists).

The connected component of the set of zeros starting at (zλ=0(0), 0) is a differentiable
curve that we can parameterize by arc length,1 s. In coordinates, c(s) = (pλ(s)(0), λ(s)) is
solution of the differential equation

dc
ds

(s) =
−→
T (c(s)), c(0) = (pλ=0(0), 0), (4)

where
−→
T (c) is the unit tangent vector defined up to orientation by

−→
T (c) ∈ Ker h′(c) (c is

not critical so the kernel is one-dimensional). As critical points are avoided, orientation is
choosen so that the sign of

det
[
ker h′(c)T −→T (c)

]
remains constant. In contrast with established predictor-corrector methods ([31], e.g.), we
follow the path of zeros by merely integrating the differential equation using a high order
numerical scheme without making any correction step.

3. Algorithmic aspects

The numerical integration of (4) uses a high order one step scheme with variable stepsize.
At each step, the tangent vector defining the right hand side has to be computed. This
essentially amounts to evaluating the differential of the homotopy (and then to reveal its
kernel by standard linear algebra). In coordinates,

∂p0h(p0, λ) = ∂p0 x[p0, λ],

∂λh(p0, λ) = ∂t f x[p0, λ]t′f (λ) + ∂x0 x[p0, λ]x′0(λ) + ∂λx[p0, λ] − x′f (λ),

where [p0, λ] stands for (t f (λ), x0(λ), p0, λ). The derivatives of t f , x0 and x f are straight-
forwardly computed by AD. As x[p0, λ] is the x-component of the solution evaluated at
t f of the system defined by the maximized Hamiltonian,

∂t f x[p0, λ] = ∇pH(x[p0, λ], p[p0, λ])

where p[p0, λ] is the p-component of the same solution at t f . For the variational deriva-
tives ∂x0 x, ∂p0 x and ∂λx, the first option is to use plain finite differences. Now, it is nu-
merically crucial in applications to use variable stepsize methods to compute adapted
discretizations thanks to local error control (nested Runge–Kutta methods do so at very
low cost). In this case, finite differences are known to behave poorly as the two grids dy-
namically computed to evaluate, say, x[p0, λ] and x[p0 +δp0, λ], may differ, generating an
artificial nondifferentiability. The workaround is to force the grid to remain the same when
evaluating for p0 + δp0. This is known as Internal Numerical Derivative (IND, [7]). An
alternative is to use AD on the integration code. Because of the variable stepsize, the code
only defines a piecewise differentiable function, and AD actually computes the piecewise
derivative, providing the same order of precision as IND for explicit one-step variable
stepsize methods [23]. The last option is to explicitly assemble the variational system to
compute Jacobi fields. As

−→
H′ is evaluated along the current solution, one has to integrate

1Under our assumption, the absence of conjugate point even implies that we can parameterize by λ, at least locally.
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simultaneously z and δz systems (2n + 4n2 dimensions to obtain the complete Jacobian
with δz a matrix of order 2n),

ż(t) =
−→
H(z(t), λ), δż(t) = ∂z

−→
H(z(t), λ), z(0) = z0, δz(0) = I2n.

In the case of explicit one-step schemes with variable stepsize, AD on the integration
code and VAR (integration of the augmented variational system) are identical provided
the stepsize control in the latter case is made only on z-components (and not on (z, δz)).
The same analysis holds for the variational derivative with respect to λ.

A byproduct of any of the three approaches, IND, AD or VAR, is the computation of
Jacobi fields on [0, t f (λ)] which allows to verify numerically the assumption of §2. Let
δzi be the Jacobi fields with initial conditions δzi(0) = (0, ei), i = 1, n, used to compute
∂p0 x[p0, λ] ({e1, . . . , en} being the canonical basis). The assumption that no Jacobi field
along the extremal becomes vertical on (0, t f (λ)] is equivalent to check that the rank of
{δxi(t), . . . , δxn(t)} is equal to n for t ∈ (0, t f (λ)]. In practice, a sign change in the deter-
minant of the Jacobi fields can be monitored, with a drawback on the magnitude as the
determinant is equal to the product of the singular values, all vanishing for t = 0. A com-
plementary test is thus to inspect the dynamics of the smallest singular value along the
reference extremal.

The hampath compiler [15] implements these ideas. It extends cotcot [9, 10] by
adding the homotopy layer as described in §2-3 and compiles a description via Fortran
files of a regular family of optimal control problem into a collection of Matlab Mex-files.
The entries are two files, hfun.f and bcfun.f defining respectively the smooth maxi-
mized Hamiltonian and the boundary conditions,

H(t, x, p, λ) : R × Rn × Rn × R→ R, b(z0, t f , z f , λ) : R2n × R × R2n × R→ R2n.

The dynamics is not assumed to be autonomous and the final times may be left free, that is
why t and t f appear in the list of arguments of H and b, respectively. Boundary conditions
are more general than what we have described and actually allow for initial and terminal
constraints defined by proper submanifolds of the ambiant manifold rather than single
points (again parameterized by λ),

x(0) ∈ X0,λ, x(t f ) ∈ X f ,λ.

Pontryagin maximum asserts that transversality conditions hold

p(0) ⊥ Tx(0)X0,λ, p(t f ) ⊥ Tx(t f )X f ,λ,

which, in coordinates, are translated into function b. In such a case, the absence of con-
jugate point along the reference extremal is still necessary but the condition is not sharp
enough and one has to introduce focal points (see for instance [18] in the Riemannian
case). The output of the compiler is a series of Mex-functions. Among these,

expdhvfun exponentiates ∂x
−→
H, that is integrates simultaneously the adjoint system in z

an its linearized to compute Jacobi fields. The ODE integrator is dopri5 [23] (explicit
Runge–Kutta method of order 5 with dense output).

ssolve seeks a zero of the homotopy shooting function for a single λ. Typically, it is used
to compute the initial condition for pathfollowing. The Newton solver is hybrj [19]
(modified Powell hybrid method). The Jacobian of the shooting function is computed
by the VAR approach.

hampath follows the path of zero by merely integrating differential equation (4).
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As is clear from Fig. 1 overview of the code organisation, several first and second order
derivatives have to be generated. This is done by AD using tapenade [24]. In addition
to the derivatives listed at the beginning of the section, the symplectic gradient and its
derivative (that is the Hessian of H up to some block permutation) are computed by AD,
then is used to assemble the adjoint system and the Jacobi one as well.

4. Example 1: Quantum control

We address the energy minimization problem for two-level dissipative quantum systems
[8, 12]. It consists in minimizing the L2-norm of the control over a fixed transfer time t f ,
while steering an initial state q0 to a final state q1. The state is q = (x, y, z) ∈ R3 and the
dynamics is given by the control system

ẋ = Γx + u2z,

ẏ = −Γy − u1z,

ż = γ− − γ+ + u1y − u2x.

This system is deduced from Kossakowski–Lindblad equations describing the dynamics
of two-level dissipative quantum systems in the Rotating Wave Approximation. Up to a
proper renormalization, it corresponds to the Bloch equation in Nuclear Magnetic Res-
onance (NMR), when the detuning term is zero. The dissipative parameters satisfy the
constraint 2Γ ≥ γ+ ≥ |γ−|, and the control is the complex function u = u1 + iu2 mod-
elizing the action of an electromagnetic field. The cost corresponds to the energy transfer
between the control field and the internal Hamiltonian and is an important physical issue.
The Bloch ball |q| ≤ 1, which is the physical state space of the system, is invariant for
the dynamics. Such a control problem is motivated by two recent experimental research
projects. The first one concerns the control of the rotation of a molecule in a gas phase
by using laser fields, and the second deals with the control of the spin dynamics by a
magnetic field in NMR.

If we use spherical coordinates x = ρ sin φ cos θ, y = ρ sinϕ sin θ , z = ρ cos θ, the state
equation becomes

ρ̇ = γ− cosϕ − ρ(δ cos2 ϕ + Γ),

θ̇ = −v1 cotϕ,

ϕ̇ = −
γ− sinϕ

ρ
+ δ sinϕ cosϕ + v2,

where δ = γ+ − Γ and the new control is v = eiθu = v1 + iv2. Note in particular that the
cost is invariant by this feedback as∫ t f

0
(v2

1 + v2
2) dt =

∫ t f

0
(u2

1 + u2
2) dt.

The initial and final state are here (ρ(0), θ(0), ϕ(0)) = (1, 0, π/4) and (ρ(t f ), θ(t f ), ϕ(t f )) =

0.3534, 2.053, 0.6004). The final time is set to t f = 0.5. Parameters γ+ and γ− are fixed
respectively to 2 and 0.1, and we are interested here by the evolution of the solution when
the parameter Γ is decreased from 3 to 2. The corresponding path of zeros is portrayed
Fig. 2. Optimal controls and trajectories for intermediate Γ are represented Figs. 3 and 4.
Sufficient second order conditions are verified by a rank test on Jacobi fields along these
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extremals, see Fig. 5, ensuring that we obtain C 0-local optimal solutions of the problem
in the whole range of physical parameters.
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Figure 2. Energy minimization in quantum control, path of zeros. The initial adjoint state p0 ∈ (R3)∗ solution of the
shooting function is computed when the homotopic parameter Γ decreases from 3 to 2.

5. Example 2: Two-body control

Motivated by orbit transfer problems in space mechanics [3, 27], we study the two-body
controlled equation,

q̈(t) = −µ
q(t)
|q(t)|3

+
εu(t)

m
, |u| ≤ 1.

The position vector q is in R3 and we restrict to non-collision elliptic orbits,

q × q̇ , 0, q̇2 <
2µ
|q|

,

which defines the six-dimensional state manifold here in the Cartesian coordinates. The
control u is prescribed to the unit Euclidean ball, u2

1 + u2
2 + u2

3 ≤ 1, and εu/m where m
is the mass of the second body models the acceleration at our disposal. Typically, εu is
the thrust of a spacecraft in the central field of a planet (the first body) whose gravitation
constant is µ. For small ε, the trajectory is a perturbation of the integrable Keplerian
motion. Dimension five coordinates associated to first integrals that describe the geometry
of the osculating ellipse, plus an angular position parameter, are well suited for numerical
computations as all but the last one will be slowly varied during the motion. The semi-
latus rectum P and the eccentricity e prescribe the shape of the ellipse. The three Euler
angles, Ω (precession angle or ascending node longitude), i (nutation angle or inclination),
θ (proper rotation or argument of perigee), prescribe the rotation of the orbit plane treated
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Figure 3. Energy minimization in quantum control, controls. The two components of optimal controls for Γ = 3, 2.75, 2.5,
2.25 and 2 are portrayed, illustrating the change of strategy when the physical parameter is decreased.
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Figure 4. Energy minimization in quantum control, trajectories. Optimal trajectories in the Bloch ball are projected in the
(x, z)-plane (upper subplot) and (y, z)-plane (lower subplot) for Γ = 3, 2.75, 2.5, 2.25 and 2.

as a rigid body. Adding longitude, l, to define the position of the ellipse itself (l − (Ω + θ)
measures the polar angle with respect to semi-major axis in the orbit plane), we obtain
a complete set of coordinates. Equivalently, we choose (P, ex, ey, hx, hy, l) where the two
vectors

(ex, ey) = e(cos(Ω + θ), sin(Ω + θ)), (hx, hy) = tan(i/2)(cos Ω, sin Ω),
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Figure 5. Energy minimization in quantum control, second order condition check. Along each extremal for Γ = 3, 2.75,
2.5, 2.25 and 2, three Jacobi fields are computed and the rank of {δx1(t), δx2(t), δx3(t)} is evaluated by SVD. The evolution
of the smallest singular value σ3 is portrayed in each case (upper subplot). A careful check shows that it remains positive
on (0, t f ] (even in the neighbourhood of Γ = 2.1), so second order sufficient conditions apply and settle C 0-local optimality.
The evolution of σ3(t f ) along the path, directly connected to the rank condition of the homotopy, is also given (lower
subplot).

are oriented by the semi-major axis (eccentricity vector) and the line of nodes, respec-
tively. In these coordinates, the dynamics reads

ẋ(t) = F0(x(t)) +
ε

m

3∑
i=1

ui(t)Fi(x(t))

with

F0(x) =

√
µ

P
W2

P
∂

∂l
,

F1(x) =

√
P
µ

(
sin l

∂

∂ex
− cos l

∂

∂ey

)
,

F2(x) =

√
P
µ

(
2P
W

∂

∂P
+ (cos l +

ex + cos l
W

)
∂

∂ex
+ (sin l +

ey + sin l
W

)
∂

∂ey

)
,

F3(x) =

√
P
µ

(
−

Zey

W
∂

∂ex
+

Zex

W
∂

∂ey
+

C cos l
2W

∂

∂hx
+

C sin l
2W

∂

∂hy

)
,

and

W = 1 + ex cos l + ey sin l, Z = hx sin l − hy cos l, C = 1 + h2
x + h2

y .
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In contrast with §4, the cost functional is the L1-norm of the control,∫ t f

0
|u(t)| dt → min, |u(t)| =

√
u1(t)2 + u2(t)2 + u3(t)2,

with free final time t f . Such a performance index models the fuel consumption (here with
the approximation that the mass, m, remains constant) and is much more complicated than
an L2-cost as is clear when applying Pontryagin maximum principle.

The normal Hamiltonian to be maximized (the abnormal case is trivially eliminated
here, so we set p0 = −1) is

H(x, u, p) = −|u| + H0(x, p) +
ε

m

3∑
i=1

uiHi(x, p)

where each Hi(x, p) = pFi(x) is the Hamiltonian lift of the corresponding vector field. Let
us define the two switching functions

ψ(x, p) = (H1,H2,H3)(x, p), ϕ(x, p) = −1 +
ε

m
ψ(x, p).

On the open dense subset ψ , 0, the maximizer of H(x, ·, p) on the unit Euclidean ball is

u =
ψ

|ψ|
when ϕ > 0, u = 0 when ϕ < 0,

arbitrary if ϕ vanishes. As a result, the control norm is bang-bang (equal to 0 or 1), and the
problem is very difficult to solve without a priori knowledge on the switching structure
[26]. We therefore propose a standard interior penalization using a logarithmic barrier
[4, 5] to eliminate simultaneously the lack of regularity coming from the nonemptyness
of the control set boundary (|u| = 1) and from the non-differentiability of the cost integrand
at u = 0. For α ∈ [0, 1], consider the cost∫ t f

0
[|u| − (1 − α) ln |u| − (1 − α) ln(1 − |u|)] dt

for u in the open pointed unit ball, 0 < |u| < 1. Moreover, we combine this approach with
a second perturbation putting∫ t f

0
{(1 − β) + β[|u| − (1 − α) ln |u| − (1 − α) ln(1 − |u|)]} dt.

When β is zero, the cost is t f and we have the minimum time problem which is much
simpler and well studied [16]. For β = 1 and α = 1 the original problem is retrieved,
while for β ∈ [0, 1] and α < 1, we are in the regular situation described in §1-2. Another
approach would consist in solving directly the target problem. Although second order
conditions that treat mixed control-state constraints are available [25], this would have
two disadvantages in our view. First, one has to guess the number and location of junction
points with the boundary of the constraint (whereas following the path turns numerically
to capture the structure as illustrated by Fig. 7). Moreover, these junction points set up
new unknowns of the problem, making its solution even costlier (for low thrusts, that is
for small ε, there are hundreds of junctions). Rather than cascading the two homotopies,
we use a single continuation λ 7→ (α(λ), β(λ)). The question of convergence when α → 1
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is an issue though some hints can be found in the literature (see, e.g., [29, 30]). See also
[21, 22] for results on this problem using another homotopy.

The results below solve a problem originally posed by the French Space Agency. A
satellite of mass m = 1500 Kg around the Earth (µ = 398600.47 km3s−2) is to be trans-
ferred from an initial low, eccentric and inclined orbit towards the geostationary one using
an ε = 10 Newtons thrust. In our chart,

P0 = 11625 Km, ex0 = 0.75, ey0 = 0, hx0 = 0.612, hy0 = 0, l0 = π rad,
P f = 42165 Km, ex f = 0, ey f = 0, hx f = 0, hy f = 0, l f = 56 rad.

Numerical simulations are displayed for λ between 0 and 1 − 1e − 3. The corresponding
path of zeros is portrayed Fig. 6. Optimal controls for intermediate λ (close to 0, or close
to 1) are represented Fig. 7. The trajectory for λ = 0.999 is at Fig. 8. Sufficient second
order conditions are verified by a rank test on Jacobi fields along these extremals, see
Fig. 9, ensuring that we obtain C 0-local optimal solutions of the problem for λ < 1.
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Figure 6. L1-minimization in two-body control, path of zeros. The initial adjoint state p0 ∈ (R6)∗ solution of the shooting
function is computed when the homotopic parameter tends to 1.
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