On solving optimal control problems by continuation and multiple shooting methods

15th Austrian-French-German conference on Optimization

O. Cots

AFG’11, Toulouse, September 19-23, 2011
Introduction - Collaborations

-- Bernard Bonnard (Univ. Bourgogne)
-- Jean-Baptiste Caillau (Univ. Bourgogne)
-- Joseph Gergaud (N7 - IRIT)
-- Steffen J. Glaser (Univ. Munich)
-- Dominique Sugny (Univ. Bourgogne)
-- ...

Figure: (LHS) Hard pulse of 90°. (RHS) Optimal solution.
Contrast problem

\[
|q_2(t_f)|^2 = (y_2^2(t_f) + z_2^2(t_f)) \rightarrow \max
\]

\[
\begin{align*}
\dot{y}_1 &= -\Gamma_1 y_1 - u z_1 \\
\dot{z}_1 &= \gamma_1 (1 - z_1) + u y_1 \\
\dot{y}_2 &= -\Gamma_2 y_2 - u z_2 \\
\dot{z}_2 &= \gamma_2 (1 - z_2) + u y_2
\end{align*}
\]

\[
q_1(0) = (0, 1) = q_2(0) \\
q_1(t_f) = (0, 0)
\]

\[
q_i = (y_i, z_i), \ |q_i| \leq 1, \ i = 1, 2
\]

\[
\gamma_i = 1/(32.3 \ T_{i1}) \\
\Gamma_i = 1/(32.3 \ T_{i2})
\]

\[
|u| \leq 2\pi
\]

Figure: Trajectories of spin 1, 2 and the control associated for the Blood case.
Single spin problem

\[(P_1) \begin{cases}
 t_f \to \min \\
 \dot{y} = -\Gamma y - u z \\
 \dot{z} = \gamma(1 - z) + u y \\
 q(0) = (0, 1) \\
 q(t_f) = (0, 0)
\end{cases} \]

\[q = (y, z), \ |q| \leq 1 \]

\[\frac{3\gamma}{2} < \Gamma \]

\[|u| \leq 2\pi \]

The dynamics:
\[\dot{q} = F(q) + u G(q) \]

The Hamiltonian:
\[H(q, u, p) = H_F(q, p) + u H_G(q, p), \ H_i = \langle p, F_i \rangle, \ i = F, G \]

⇒ The singular extremals are those contained in \(H_G = 0 \).
The singular extremals are those contained in $H_G = 0$.

\[
\begin{align*}
H_G &= \langle p, G \rangle = 0 \\
\dot{H}_G &= \langle p, [G, F] \rangle = 0
\end{align*}
\] \Rightarrow \det(G, [G, F]) = y(-2\delta z + \gamma) = 0

with $\delta = \gamma - \Gamma$.

The singular lines are $y = 0$ and $z_0 = \frac{\gamma}{2\delta}$. The singular control $u_s(q, p)$ is computed from

\[
\ddot{H}_G = \{\{H_G, H_F\}, H_F\}(z) + u_s\{\{H_G, H_F\}, H_G\}(z) = 0.
\]

Horizontal line ($z_0 = \frac{\gamma}{2\delta}$) : optimal, according to Generalized Legendre-Clebsch condition (see [BC03]) and $u_s(q) = \gamma(2\Gamma - \gamma)/(2\delta y) \Rightarrow u_s \in L^1$, $u_s \notin L^2$

Vertical line ($y = 0$) : optimal for $z_0 < z < 1$ (GLC) and $u_s(q) = 0$.
Single spin : global synthesis

Red : bang \((u = 2\pi)\)
Blue : bang \((u = -2\pi)\)
Green : singular \((u = u_s)\)
B : saturation

Results on contrast problem

O. Cots (IMB Bourgogne)
Single spin \Rightarrow contrast problem

- We need to start with a bang.

- Singular extremals are expected for the contrast problem.

To solve the contrast problem, we use an indirect method (multiple shooting)

\Rightarrow we need to know the structure a priori.

\Rightarrow we use an homotopic approach to capture the structure and initialize the multiple shooting method.
Homotopy (P_λ):

\[
\begin{aligned}
(-y_2^2(t_f) + z_2^2(t_f)) + (1 - \lambda) \int_0^{t_f} |u|^{2-\lambda} \, dt \to \min \\

\begin{cases}
\dot{y}_1 &= - \Gamma_1 y_1 - u z_1 \\
\dot{z}_1 &= \gamma_1 (1 - z_1) + u y_1 \\
\dot{y}_2 &= - \Gamma_2 y_2 - u z_2 \\
\dot{z}_2 &= \gamma_2 (1 - z_2) + u y_2 \\
q_1(0) &= (0, 1) = q_2(0) \\
q_1(t_f) &= (0, 0)
\end{cases}
\end{aligned}
\]

\[\gamma_i = 1/(32.3 \, T_{i1}) \quad \Gamma_i = 1/(32.3 \, T_{i2}) \quad |u| \leq 2\pi\]

$H(q(u, p, \lambda)) = H_F(q, p) + u H_G(q, p) + (1 - \lambda) |u|^{2-\lambda}$

(P_λ)-extremals are admissible for (P).
The maximization of the Hamiltonian gives:

\[u(q, p, \lambda) = \arg\max_{w \in U} H(q, w, p, \lambda) \]

and we have

\[\lambda < 1 \Rightarrow \begin{cases}
 u = \text{sign}(H_G) \cdot \left\{ \frac{2|H_G|}{((2-\lambda)(1-\lambda))} \right\}^{\frac{1}{(1-\lambda)}} & \text{if } |u| \leq 2\pi \\
 u = 2\pi \cdot \text{sign}(H_G) & \text{else}
\end{cases} \]

We call true Hamiltonian the function (which does not depend on u)

\[H_r(q, p, \lambda) = H(q, u(q, p, \lambda), p, \lambda) \]

In order to solve the problem \((P)\) in \(\lambda = 1\), we :

1. solve by simple shooting method the problem in \(\lambda = 0\) easily,
2. use homotopic method to solve \((P_{\lambda})\), from \(\lambda = 0\) to \(\lambda = \lambda_f < 1\), to . . .
3. . . . capture the structure of \((P)\) and initialize the multiple shooting method.
1 : Solving in $\lambda = 0$ with simple shooting method

The final time t_f is equal to $1.1T_{\text{min}}$ where T_{min} is the minimal time to transfer the spin 1 from $(0, 1)$ to $(0, 0)$.

Blood case:

Spin 1 = (De)oxygenate blood: $T_{11} = 1350$ and $T_{21} = 200$

Spin 2 = Oxygenate blood: $T_{12} = 1350$ and $T_{22} = 50$

Figure: Solution for $\lambda = 0$ with $L^2-\lambda$ regularization. Trajectories of spin 1 and 2 and the control associated.
Let define the homotopic function

\[h : \mathbb{R}^{2n} \times [0, 1] \rightarrow \mathbb{R}^{2n} \]

\[(z_0, \lambda) \mapsto S_\lambda(z_0) \]

with \(z_0 = (q_0, p_0) \).

Assuming that 0 is a regular value for \(h \), the level set \(\{ h = 0 \} \) is a one dimensional submanifold of \(\mathbb{R}^{2n+1} \) called the path of zeros.

We know a zero of \(h(., \lambda) \) for \(\lambda_0 = 0 \) noted \(z_0^0 \), and we want to follow this path to reach a zero for a target value of the parameter \(\lambda \) close to 1.
Differential algorithms

HAMPATH uses **DOPRI5** from E. Hairer and G. Wanner [HrW93] [HW], for the numerical integration (without any correction) of:

\[
(IVP) \begin{cases}
\dot{c}(s) = T(c(s)) \\
c(0) = (z_0^0, 0)
\end{cases}
\]

Until \(s_f \) such as \(\lambda(s_f) \) close to 1 (dense output).

Under generic assumptions, \(\dot{c}(s) = T(c(s)) \) is determined by:

1. \(h'(c(s)) \dot{c}(s) = 0 \)
2. \(|\dot{c}(s)| = 1 \)
3. \(\det \begin{pmatrix} h'(c(s)) & \dot{t}(c(s)) \\ \dot{c}(s) & t(c(s)) \end{pmatrix} \) is of constant sign

The path of zeros: $\lambda_f = 0.915$.

Figure: Homotopic path with $L^2-\lambda$ regularization. Initial adjoint vector w.r.t. λ.
Control: $\lambda \in \{0.5, 0.8, 0.9, 0.915\}$
States-Control : $\lambda = 0.915$

$\lambda = 0.915$

$\lambda = 0.915$

\rightarrow Bang-Singular structure.

Figure: Solution for $\lambda = 0.915$ with $L^2 - \lambda$ regularization. Trajectories of spin 1 and 2 and the control associated.
We have a BS structure for \(t_f = 1.1T_{\text{min}} \). We denote by \(t_0, t_1, t_f \) the different instants and by \(z_0, z_1, z_f \) the state-costate variables associated \((z = (q_1, q_2, p_1, p_2) \in \mathbb{R}^4 \times \mathbb{R}^4) \).

- **Hamiltonian**:
 \[
 H(q, u, p) = H_F(q, p) + u \ H_G(q, p), \quad \left\{
 \begin{array}{ll}
 u = 2\pi & \text{if } t \in [t_0; t_1] \\
 u = u_{\text{sing}} & \text{if } t \in [t_1; t_f]
 \end{array}
 \right.
 \]

- **Equations (cf. [Mau76])**:

 \[
 \begin{align*}
 (t_0, z_0) & \quad \rightarrow \quad (t_1, z_1) & (t_f, z_f) \\
 q_1 & = (0, 1) & H_G & = 0 & q_1 & = (0, 0) \\
 q_2 & = (0, 1) & \dot{H}_G & = 0 & q_2 & = p_2
 \end{align*}
 \]

 with the matching conditions \(z(t_1; t_0, z_0) = z_1 \).

[Mau76] H Maurer.
Numerical solution of singular control problems using multiple shooting techniques.
Trajectories of spin 1 and 2 and the control: blood case ($\lambda = 1.0$)

Figure: First solution (contrast of 0.41) from the $L^2-\lambda$ regularization.

Figure: Second solution (contrast of 0.42) from the $L^2-\lambda$ regularization.
The limitation of the $L^2-\lambda$ regularization.

Let define the L^2 regularization:

$$- \left(y_2^2(t_f) + z_2^2(t_f) \right) + (1 - \lambda) \int_0^{t_f} |u|^2(t)dt \rightarrow \min$$

The Hamiltonian becomes:

$$H(q, u, p, \lambda) = H_F(q, p) + u H_G(q, p) + (1 - \lambda) |u|^2$$

And the maximization of the H gives:

$$\lambda < 1 \Rightarrow \begin{cases}
 u = -\frac{H_G}{2(1-\lambda)p^0} & \text{if } |u| \leq 2\pi \\
 u = 2\pi \text{sign}(H_G) & \text{else}
\end{cases}$$

We find a better solution with contrast about 0.45. The two previous solutions are just local optimums.

Figure: Best solution (contrast of 0.45) from the L^2 regularization.
We have an optimal control problem with Bang and Singular arcs. The regularizations $L^{2-\lambda}$ and L^2 permit to find solutions satisfying the first order necessary conditions of optimality.

To solve in $\lambda = 0$ is very easy.

$L^{2-\lambda}$ captures the BS structure very well compared to L^2. However we only get the best solution with L^2.

We use HAMPATH to perform a differential continuation on t_f from $T_{\text{min}} + \varepsilon$ to $2T_{\text{min}}$.

- T_{min}: the minimal time to transfer the spin 1 from $(0, 1)$ to $(0, 0)$.

\rightarrow there is an horizontal asymptote on the contrast plot. The optimal solution in terms of contrast is obtain from $t_f = 1.3T_{\text{min}}$.

Figure: (LHS) Contrast w.r.t the transfer duration. (RHS) Normalized duration of the Bang arc.
From the true hamiltonian and the boundary, intermediate and transversality conditions, HAMPATH [CCG11] :

- produces automatically the state-costate equations (thanks TAPENADE)
- computes the shooting function by numerical integration (thanks DOPRI5)
- provides the variationnal equations used in the jacobian of the shooting function (thanks TAPENADE)
- integrates the variationnal equations so that the diagram commutes (the step size control is only made on the state and co-state equations)

\[
\begin{align*}
(IVP) & \quad \text{Numerical integration} \quad h(z_0, \lambda) \\
\text{Derivative} & \quad \downarrow \qquad \downarrow \text{Derivative} \\
(VAR) & \quad \text{Numerical integration} \quad \frac{\partial h}{\partial z_0}(z_0, \lambda)
\end{align*}
\]
Global diagram of HAMPATH

\[\text{efun} \quad b(t_i, z_i, \lambda) \]

\[\text{hfun} \quad H_R(t, z, \lambda) \]

\[\frac{\partial H_R}{\partial p}, -\frac{\partial H_R}{\partial x} \]

\[\overrightarrow{H} \]

\[d\overrightarrow{H} \]

\[S(t_i, z_i, \lambda) \]

\[S'(t_i, z_i, \lambda) \]

\[T(S'(t_i, z_i, \lambda)) \]

FORTRAN 90

TAPENADE

DOPRI5

MATLAB functions

Available for use

hampath

continuation method

expdhvfun

variational equations

ssolve

shooting method

HYBRJ

O. Cots (IMB Bourgogne)

Results on contrast problem

AFG’11 22 / 24
The HAMPATH package gives tools to solve OCP by indirect methods:

- Shooting methods: simple and multiple;
- Homotopic methods: differential without correction and discrete;
- Function which integrates the variationnal equations and permit to check sufficient second order conditions in the smooth case;
- ...

The derivatives and the functions are computed accurately and automatically.

It is very easy to use since only 2 FORTRAN subroutines need to be implemented. Then it is interfaced with MATLAB.

Homotopic method gave us the right structure and a good initial point for the contrast problem. We could compute the solution with accuracy thanks to multiple shooting.

Work in progress:

- Second order conditions for regularized problem and BS structure;
- Convergence of the zeros path to the best solution.
E.L. Allgower and K. Georg.

B. Bonnard and M. Chyba.

B. Bonnard, Olivier Cots, S. Glaser, M. Lapert, and Dominique Sugny.
Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance. math.u-bourgogne.fr, 2011.

B. Bonnard, M. Chyba, and Dominique Sugny.

B. Bonnard and Dominique Sugny.

J.B. Caillau, O. Cots, and J. Gergaud.

E. Hairer, S.P. Nørsett, and G. Wanner.

E. Hairer and G. Wanner.
DOPRI5 http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f.

M. Lapert, Y. Zhang, M. Braun, S. Glaser, and Dominique Sugny.

H. Maurer.